Chatterbox AI Powered Learning

The logical statement (p -> ~q) <-> (p ^ q) is A) a tautology B) a contradiction C) neither a tautology nor a contradiction (D) equivalent to ~p V q

Question

The logical statement (pq)(pq)(p \rightarrow \sim q) \leftrightarrow (p \wedge q) is

A) a tautology

B) a contradiction

C) neither a tautology nor a contradiction

(D) equivalent to pq\sim p \vee q

Answer

Solution

The correct option is B: a contradiction.

To determine the nature of the statement (pq)(pq)(p \rightarrow \sim q) \leftrightarrow (p \wedge q), we construct a truth table to examine all value combinations of pp and qq:

[ \begin{array}{|c|c|c|c|c|c|} \hline p & q & \sim q & p \rightarrow \sim q & p \wedge q & (p \rightarrow \sim q) \leftrightarrow (p \wedge q) \ \hline T & T & F & F & T & F \ T & F & T & T & F & F \ F & T & F & T & F & F \ F & F & T & T & F & F \ \hline \end{array} ]

  • Column q\sim q: Negation of qq.
  • Column pqp \rightarrow \sim q: Represents pp implies not qq; true unless pp is true and q\sim q (not qq) is false.
  • Column pqp \wedge q: True if both pp and qq are true.
  • The final column evaluates (pq)(pq)(p \rightarrow \sim q) \leftrightarrow (p \wedge q), which checks whether the two expressions have the same truth value.

From the truth table, we observe that the final column always results in false. Therefore, the statement is a contradiction because it can never be true under any combination of truth values for pp and qq. Thus, (pq)(pq)(p \rightarrow \sim q) \leftrightarrow (p \wedge q) is not equivalent to pq\sim p \vee q nor any other expression that contains a true scenario. Hence, this confirms that the correct choice is (B) a contradiction.

Follow-up Questions:

Related Questions

See how Chatterbot AI can help you succeed

Hi there! What can I help you learn today?

Click here to learn something new with Chatterbox AI Tutor.

Chatterbox

AI Tutor