Chatterbox AI Powered Learning

If tan^2 theta, sec^2 theta are the roots of ax^2 + bx + c = 0 then b^2 - a^2 = A 4ac B a^2 C 4bc D 4ab

Question

If tan2θ,sec2θ\tan^{2} \theta, \sec^{2} \theta are the roots of ax2+bx+c=0ax^{2} + bx + c = 0 then b2a2=b^{2} - a^{2} =

A 4ac4ac B a2a^{2} C 4bc4bc D 4ab4ab

Answer

To solve for the value of b2a2 b^2 - a^2 given that tan2θ\tan^2 \theta and sec2θ\sec^2 \theta are the roots of the quadratic equation ax2+bx+c=0 ax^2 + bx + c = 0 , follow these steps:

  1. Sum and Product of Roots:

    • Recognize that for a quadratic equation ax2+bx+c=0 ax^2 + bx + c = 0 with roots α\alpha and β\beta, the sum of the roots is given by: α+β=ba \alpha + \beta = -\frac{b}{a} and the product of the roots is: αβ=ca \alpha \beta = \frac{c}{a}
    • Here, let α=sec2θ\alpha = \sec^2 \theta and β=tan2θ\beta = \tan^2 \theta.
  2. Key Identity:

    • Use the trigonometric identity: sec2θtan2θ=1 \sec^2 \theta - \tan^2 \theta = 1
  3. Equation Setup:

    • Using the identities for roots, we substitute: α+β=sec2θ+tan2θ=ba \alpha + \beta = \sec^2 \theta + \tan^2 \theta = -\frac{b}{a} αβ=sec2θtan2θ=ca \alpha \beta = \sec^2 \theta \cdot \tan^2 \theta = \frac{c}{a}
  4. Relation Application:

    • Using the relation (α+β)2=(αβ)2+4αβ(\alpha + \beta)^2 = (\alpha - \beta)^2 + 4\alpha \beta, substitute the known values: (ba)2=(sec2θtan2θ)2+4ca \left( -\frac{b}{a} \right)^2 = (\sec^2 \theta - \tan^2 \theta)^2 + 4 \frac{c}{a}
    • As sec2θtan2θ=1\sec^2 \theta - \tan^2 \theta = 1: (ba)2=12+4ca \left( -\frac{b}{a} \right)^2 = 1^2 + 4 \frac{c}{a}
  5. Simplify:

    • Simplify the above equation: b2a2=1+4ca \frac{b^2}{a^2} = 1 + \frac{4c}{a}
    • Cross-multiply to clear the fraction: b2=a2+4ac b^2 = a^2 + 4ac
  6. Final Result:

    • Rearrange to find b2a2b^2 - a^2: b2a2=4ac b^2 - a^2 = 4ac

Thus, the value of b2a2 b^2 - a^2 is 4ac.

Answer: A

Follow-up Questions:

Related Questions

See how Chatterbot AI can help you succeed

Hi there! What can I help you learn today?

Click here to learn something new with Chatterbox AI Tutor.

Chatterbox

AI Tutor