Chatterbox AI Powered Learning

A saturated 0.01 M H2S solution is buffered at pH 3 with exactly sufficient Pb(NO3)2 to not precipitate PbS. Ka of H2S = 10^-23, Ksp of PbS = 10^-28. The concentration of Pb^+2 in the solution is 10^-x. What is x?

Question

A saturated 0.01 M H2S solution is buffered at pH 3 with exactly sufficient Pb(NO3)2 to not precipitate PbS. Ka of H2S = 10^-23, Ksp of PbS = 10^-28. The concentration of Pb^+2 in the solution is 10^-x. What is x?

Answer

To find the value of xx in this problem, we need to calculate the concentration of Pb2+\text{Pb}^{2+} in a buffered H2S\text{H}_2\text{S} solution.

Given data:

  • pH = 3
  • [H2S]=0.01,M[\text{H}_2\text{S}] = 0.01 , M
  • KaK_a of H2S=1023\text{H}_2\text{S} = 10^{-23}
  • KspK_{sp} of PbS=1028\text{PbS} = 10^{-28}

Steps to solve:

  1. Determine the (H+\text{H}^+) concentration:

    • Since pH = 3, [H+]=103,M H+\text{H}^+ = 10^{-3} , \text{M}
  2. Use the dissociation equation of H2S\text{H}_2\text{S}:

    • The dissociation of H2S\text{H}_2\text{S} is given by: H2S2H++S2 \text{H}_2\text{S} \rightleftharpoons 2\text{H}^+ + \text{S}^{2-}
  3. Apply the acid dissociation constant KaK_a:

    • The expression for KaK_a is: Ka=[H+]2[S2][H2S] K_a = \frac{[\text{H}^+]^2 [\text{S}^{2-}]}{[\text{H}_2\text{S}]}
    • Plugging in the values: 1023=(103)2[S2]0.01 10^{-23} = \frac{(10^{-3})^2 [\text{S}^{2-}]}{0.01}
    • Simplify: 1023=106[S2]102 10^{-23} = \frac{10^{-6} [\text{S}^{2-}]}{10^{-2}}
    • Solve for (S2\text{S}^{2-}): 1023=104[S2] 10^{-23} = 10^{-4} [\text{S}^{2-}] [S2]=1019,M [\text{S}^{2-}] = 10^{-19} , \text{M}
  4. Consider the solubility product KspK_{sp} of PbS\text{PbS}:

    • The dissociation of PbS\text{PbS} is: PbSPb2++S2 \text{PbS} \rightleftharpoons \text{Pb}^{2+} + \text{S}^{2-}
    • The expression for KspK_{sp} is: Ksp=[Pb2+][S2] K_{sp} = [\text{Pb}^{2+}] [\text{S}^{2-}]
    • Given: 1028=[Pb2+](1019) 10^{-28} = [\text{Pb}^{2+}] (10^{-19})
    • Solve for (Pb2+\text{Pb}^{2+}): [Pb2+]=10281019=109,M [\text{Pb}^{2+}] = \frac{10^{-28}}{10^{-19}} = 10^{-9} , \text{M}

Therefore, Pb2+\text{Pb}^{2+} concentration is 109,M10^{-9} , \text{M}, and the value of xx is:

9 \boxed{9}

Follow-up Questions:

Related Questions

See how Chatterbot AI can help you succeed

Hi there! What can I help you learn today?

Click here to learn something new with Chatterbox AI Tutor.

Chatterbox

AI Tutor